>>> x = np.array([[1,2,3],[4,5,6]])>>> x.shape(2, 3)>>> np.expand_dims(x, 0)array([[[1, 2, 3], [4, 5, 6]]])>>> np.expand_dims(x, 1)array([[[1, 2, 3]], [[4, 5, 6]]])>>> np.expand_dims(x, 2)array([[[1], [2], [3]], [[4], [5], [6]]])>>> np.expand_dims(x, 3)array([[[1], [2], [3]], [[4], [5], [6]]])>>> np.expand_dims(x, 4)array([[[1], [2], [3]], [[4], [5], [6]]])>>> np.expand_dims(x, 1).shape(2, 1, 3)>>> np.expand_dims(x, 2).shape(2, 3, 1)>>> np.expand_dims(x, 3).shape(2, 3, 1)>>> np.expand_dims(x, 4).shape(2, 3, 1)>>> np.expand_dims(x, 0).shape(1, 2, 3)
1. 分3部分来看。
2. expand_dims直观来说就是将某一维度展成1维,看shape的形式便可知。
3. 哪一维要设置成1,就将原始DATA重新组合,细心看输出的数据的重排形式。
4. 维度从0开始,超过都表示最后一维,-1也是最后一维。